翻訳と辞書
Words near each other
・ Frédéric Durieux
・ Frédéric Dutoit
・ Frédéric Duvallès
・ Frédéric Déhu
・ Frédéric Encel
・ Frédéric Esther
・ Frédéric Etherlinck
・ Frédéric Etsou-Nzabi-Bamungwabi
・ Fréchet filter
・ Fréchet inequalities
・ Fréchet manifold
・ Fréchet mean
・ Fréchet space
・ Fréchet surface
・ Fréchet-Aure
Fréchet–Kolmogorov theorem
・ Fréchou
・ Fréchou-Fréchet
・ Fréchède
・ Frécourt
・ Fréderic Neyrat
・ Fréderike Geerdink
・ Fréderique Robert
・ Frédille
・ Frédy Girardet
・ Frédéric
・ Frédéric Abbès
・ Frédéric Adam
・ Frédéric Adjiwanou
・ Frédéric Advice-Desruisseaux


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Fréchet–Kolmogorov theorem : ウィキペディア英語版
Fréchet–Kolmogorov theorem

In functional analysis, the Fréchet–Kolmogorov theorem (the names of Riesz or Weil are sometimes added as well) gives a necessary and sufficient condition for a set of functions to be relatively compact in an ''L''''p'' space. It can be thought of as an ''L''''p'' version of the Arzelà–Ascoli theorem, from which it can be deduced. The theorem is named after Maurice René Fréchet and Andrey Kolmogorov.
== Statement ==
Let B be a bounded set in L^p(\mathbb^n), with p\in[1,\infty).
The subset ''B'' is relatively compact if and only if the following properties hold:
#\lim_\int_\left|f\right|^p=0 uniformly on ''B'',
#\lim_\Vert\tau_a f-f\Vert_ = 0 uniformly on ''B'',
where \tau_a f denotes the translation of f by a, that is, \tau_a f(x)=f(x-a) .
The second property can be stated as \forall \varepsilon >0 \, \, \exists \delta >0 such that \Vert\tau_a f-f\Vert_ < \varepsilon \, \, \forall f \in B, \forall a with |a|<\delta .

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Fréchet–Kolmogorov theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.