|
In functional analysis, the Fréchet–Kolmogorov theorem (the names of Riesz or Weil are sometimes added as well) gives a necessary and sufficient condition for a set of functions to be relatively compact in an ''L''''p'' space. It can be thought of as an ''L''''p'' version of the Arzelà–Ascoli theorem, from which it can be deduced. The theorem is named after Maurice René Fréchet and Andrey Kolmogorov. == Statement == Let be a bounded set in , with . The subset ''B'' is relatively compact if and only if the following properties hold: # uniformly on ''B'', # uniformly on ''B'', where denotes the translation of by , that is, The second property can be stated as such that with 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Fréchet–Kolmogorov theorem」の詳細全文を読む スポンサード リンク
|